Kneser’s theorem in q-calculus

نویسندگان

  • Martin Bohner
  • Mehmet Ünal
چکیده

While difference equations deal with discrete calculus and differential equations with continuous calculus, so-called q-difference equations are considered when studying q-calculus. In this paper, we obtain certain oscillation criteria for second-order q-difference equations, among them a q-calculus version of the famous Kneser theorem. PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.Ks, 02.30.Lt, 02.20.Uw Mathematics Subject Classification: 39A13, 39A12, 34C10, 34K11

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The global isoperimetric methodology applied to Kneser’s Theorem

We give in the present work a new methodology that allows to give isoperimetric proofs, for Kneser’s Theorem and Kemperman’s structure Theory and most sophisticated results of this type. As an illustration we present a new proof of Kneser’s Theorem.

متن کامل

A Discussion of Thurston’s Geometrization Conjecture

2 Discussion of Kneser’s Theorem 3 2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 First Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Proving Kneser’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3.1 Part 1: Existence of a Prime Decomposition . . . . . . . . . . . . . 5 2.3.2 Part 2: Uniquene...

متن کامل

A generalization of Kneser’s Addition Theorem

Let A = (A1, . . . , Am) be a sequence of finite subsets from an additive abelian group G. Let Σ`(A) denote the set of all group elements representable as a sum of ` elements from distinct members ofA, and set H = stab(Σ`(A)) = {g ∈ G : g+Σ`(A) = Σ`(A)}. Our main theorem is the following lower bound: |Σ(A)| ≥ |H| ( 1− `+ ∑ Q∈G/H min { `,#{1 ≤ i ≤ m : Ai ∩Q 6= ∅} }) . In the special case when m ...

متن کامل

SOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS

In this paper, we study fuzzy calculus in two main branches differential and integral.  Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating  $gH$-derivative of a composite function.  Two techniques namely,  Leibniz's rule and integration by parts are introduced for ...

متن کامل

On some subgroup chains related to Kneser’s theorem

A recent result of Balandraud shows that for every subset S of an abelian group G there exists a non trivial subgroup H such that |TS| ≤ |T |+ |S| − 2 holds only if H ⊂ Stab(TS). Notice that Kneser’s Theorem only gives {0} 6= Stab(TS). This strong form of Kneser’s theorem follows from some nice properties of a certain poset investigated by Balandraud. We consider an analogous poset for nonabeli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005